
Specification

Chapter 1

BFlavor specification

With the BFlavor specification, it is possible to describe the syntax structure of

coding format in a C++-like manner. Note that BFlavor is built on the Formal

Language for Audio-Visual Object Representation, extended with XML features

(XFlavor). Therefore, this specification is based on the XFlavor specification which

can be found at http://flavor.sourceforge.net.

1.1 Variables

Regular variable declarations can be used in BFlavor in the same way as in C++

or Java. Besides regular variable declarations, it is also possible to use parsable

variables in BFlavor. Parsable variables are the core of BFlavor’s design; because

their value is fetched from the bitstream itself, it are parsable variables that define

the bitstream syntax. Note that parsable variables, in contrast with regular vari-

ables, will occur in the resulting bitstream description. Parsable variables include a

parse length specification immediately after their type declaration, as shown in the

following example.

int(5) var;

In the above example, the length of the parsable variable var is defined to be five

bits. The length must be an integer constant lower or equal to 64. In general,

the parse size expression must be a non-negative value. When the parsing process

reaches this declaration, five bits will be read from the bitstream. The value of these

bits will be assigned to the variable var.

1

2 CHAPTER 1. BFLAVOR SPECIFICATION

Note that variables can only occur inside a class (discussed in Section 1.6). Hence,

the use of global variables in a BFlavor code is prohibited.

Names

Variable names follow the C++ and Java conventions (i.e., variable names must

start with a letter or an underscore). The keywords that are used in C++ and Java

are also considered reserved in BFlavor.

Bitstream validation

Very often, certain syntax elements in the specification of a coding format will have

fixed values (markers, start codes, reserved bits, etc.). These syntax elements can

be checked by assigning the fixed values to their corresponding parsable variable:

int(5) var = 7;

Additionally, a parsable variable may be allowed to have a range of expected values:

int(5) var = 7 .. 12;

As both the parse size and the initial value can be arbitrary expressions, we should

note that the order of evaluation is the parse expression first, followed by the ini-

tializing expression. During the parsing process, parsable variables containing fixed

values will be checked. When the value in the bitstream does not matches the value

(or does not fit in the range) given in the BFlavor code, the parser will notify this

inconsistency. Note that this will not stop the parsing process.

1.2 Built-in functions

BFlavor provides five built-in functions that can assist in describing the high-level

syntax of a coding format.

1.2. BUILT-IN FUNCTIONS 3

1.2.1 nextbits()

A look-ahead mechanism is provided by the nextbits() function. It takes as pa-

rameter the amount of bits one wants to look forward into the bitstream. The value

of these bits is returned by this function. The general syntax is as follows:

nextbits(n);

n determines the number of bits to look ahead in the bitstream. This function

returns the integer representation of the next n bits in big-endian byte ordering.

1.2.2 getcontext()

The getcontext() function is used to retrieve information of context classes (which

will be discussed further in this specification). Context classes are useful when

information is needed that is already parsed, but that is located in another class.

The general syntax of the getcontext() function is as follows:

getcontext("classname", index, $path.$to.$variable);

The first parameter of the getcontext() function is a string which contains the

name of the context class. The second parameter is an expression which represents

the index value of the index element of the context class. The third parameter is the

variable of the context class from which we want to know the value. Because this

variable will not be defined in the class where we use this operator, a special notation

for this kind of variables has to be used. This is done by prefixing the variable with

$. A context class can contain other classes. These classes are automatically saved in

the context. In the example, we see that the class classname contains a class variable

path. The class path contains a class variable to which contains the parsable

variable variable. The variable variable can accessed via $path.$to.$variable.

index = 0 index = 1use context
class with
index = 0

use context
class with
index = 0

use context
class with
index = 1

use context
class with
index = 0

= context class

… …

= non-context class

Figure 1.1: Context classes in a bitstream.

4 CHAPTER 1. BFLAVOR SPECIFICATION

1.2.3 numbits()

This function returns the amount of bits that are already parsed since the start of

the parsing process. Consider the following example:

int nrOfBitsParsed = numbits();

In this example, the non-parsable variable nrOfBitsParsed will contain the amount

of bits that is already parsed from the bitstream since the start of the parsing process.

1.2.4 align()

The align() function reads bits from the bitstream until it reached a byte-aligned

position. The value of the padding bits will be added to the resulting bitstream

description. The following example illustrates the use of this function.

//start from byte-aligned position in the bitstream

bit(2) e1;

align();

//bitstream is back on a byte-aligned position

In this example, the align() function will parse six bits in order to set the bitstream

back on byte-aligned position.

1.2.5 skipbits()

Skipping bits from the bitstream is possible with the skipbits() function. It takes

as parameter the amount of bits that have to be skipped. Note that the skipped

bits will be lost: they will not appear in the resulting bitstream description. The

following example illustrates this function:

bit(3) e1;

skipbits(4);

bit(1) e2;

1.3 Datatypes

The variables occurring in a class can have built-in datatypes or user-defined data-

types.

1.3. DATATYPES 5

1.3.1 Built-in datatypes

The following built-in datatypes are supported by BFlavor.

• char, int, float, double: BFlavor supports the common subset of C++

and Java built-in or fundamental types. This includes char, int, float, and

double. Examples are shown below.

char(8) letter;

int(16) integer;

• bit: In addition, BFlavor defines a type called bit. The type bit is to ac-

commodate bit string variables. An example is shown below.

bit(2) twobits;

• hexBinary: the hexBinary datatype is used to describe a syntax element in

a hexadecimal manner. The length of such elements is given in terms of bytes.

This datatype is typically used for the description of start codes. The use of

this datatype is as follows:

hexBinary(3) three_bytes_start_code;

• byteRange: the byteRange datatype is used for referring to a particular

bitstream segment. For instance, this is needed when a part of the bitstream

syntax is not relevant to appear in the resulting bitstream description. Only

the start and length of the bitstream segment are written into the bitstream

description in order to correctly reconstruct the bitstream. The length of

the bitstream segment that has to be referred (and not be described) can

be specified in two different ways. First, it is possible to indicate that the

bitstream segment stops when a particular bit string (or range of bit strings)

is reached. Note that the length of the bit string must be specified (in terms

of bytes) together with the value of the bit string. Second, the length of the

bitstream segment can simply be given in terms of bytes. The two possibilities

are illustrated below.

//a byteRange variable searching for two codes in the bitstream:

//0x000001 and 0x000000

byteRange(3) payload1[2] = {0x000000, 0x000001};

6 CHAPTER 1. BFLAVOR SPECIFICATION

//a byteRange variable searching for codes in the bitstream

//within the range of 0x000000 and 0x000001

byteRange(3) payload2 = 0x000000 .. 0x000001;

//a byteRange variable containing a length of 20 bytes

byteRange(20) payload3;

BFlavor does not support pointers, references, casts, or C++ operators related to

pointers. It also does not support structures or enumerations. Finally, variables of

type float, double are only allowed to have a parse size equal to the fixed size that

their standard representation requires.

1.3.2 User-defined datatypes

BFlavor offers the possibility to create new datatypes besides the already existing

built-in datatypes. A class that represents a user-defined datatype has to extend

the Encoded base class. The class Encoded is a simple built-in base class from which

other classes may be derived. It specifies a well-defined interface:

class Encoded {

int value;

int bitvalue;

int encoded;

}

The variable value has to contain the actual value of the syntax element that is

encoded with the user-defined datatype. In certain cases, the value of the variable

value is different with the value that is obtained from the bitstream. Therefore,

this value is stored into the bitvalue variable. The encoded variable can contain

two values: 0 or 1. When encoded is equal to one, a corresponding Java class has

to be created in order to use the resulting bitstream description in the MPEG-21

BSDL framework. Note that this is not necessary when working when generating

gBSDs (MPEG-21 gBS Schema).

The following example is the implementation of the unsigned exponential golomb

datatype:

1.4. FLOW CONTROL 7

class UnsignedExpGolomb extends Encoded{

int leadingzeros = 0;

while (nextbits(leadingzeros + 1) == 0)

leadingzeros++;

int length = leadingzeros * 2 + 1;

int codenum = nextbits(length) - 1;

bit(length) ue_code;

int value = codenum;

int bitvalue = ue_code;

int encoded = 1;

}

1.4 Flow control

BFlavor supports all of the C++ and Java arithmetic, logical, and assignment op-

erators. However, parsable variables cannot be used as lvalues. (Note: this ensures

that they always represent the bitstream’s contents).

BFlavor also supports all the familiar flow control statements: if-else, do-while,

while, and switch. In contrast with C++ and Java, variable declarations are not

allowed within the arguments of these statements (i.e., for (int i=0; ;); is not

allowed). The switch statement has an extra feature: it is possible to give up a

range as value in the case statements. This is illustrated in the following example:

bit(3) a;

switch(a){

case 0:

bit(8) b;

break;

case 1 .. 5:

bit(3) c;

break;

default:

bit(1) d;

8 CHAPTER 1. BFLAVOR SPECIFICATION

}

If the variable a has a value in the range of 1 to 5, then a variable c of 3 bits is

parsed.

Even though Java does not allow non-boolean expressions within the arguments of

control statements (e.g., “if (1) ...” is not allowed in Java), BFlavor supports them

for less verbose notations. When generating Java code, the translator automatically

converts such expressions into corresponding boolean expressions.

The following is an example of the use of these flow control statements.

int(2) a;

if (a == 1) {

int(3) b;

}

else {

int(4) b;

}

The variable b is declared with a parse size of 3 if a is equal to 1, and with a parse

size of 4 otherwise.

1.5 Arrays

Multi-dimensional arrays are supported by BFlavor and can be both parsable or

non-parsable. The array size does not have to be a constant expression, but it can

be a variable as well. The following is thus allowed in BFlavor.

int(3) a;

int(2) A[a+1];

1.6 Classes

BFlavor uses the notion of classes in exactly the same way as C++ and Java do. It

is the fundamental structure in which object data is organized. Keeping in line with

the support of both C++ and Java-style programming, classes in BFlavor cannot

be nested. Also, due to the declarative nature of BFlavor, methods are not allowed

(this includes constructors and destructors).

1.6. CLASSES 9

1.6.1 General

The following is an example of a simple class declaration with just two parsable

member variables.

class SimpleClass {

int(3) a;

int(4) b;

}

This class defines objects which contain two parsable variables. They will be present

in the bitstream in the same order they are declared. After this class is defined, we

can declare objects of this class:

SimpleClass s;

Class member variables in BFlavor do not require access modifiers (public, protected,

private). In essence, all such variables are considered public.

1.6.2 Parameter Types

As BFlavor classes cannot have constructors, it is necessary to have a mechanism to

pass external information to a class. This is accomplished using parameter types.

These act the same way as formal arguments in function or method declarations do.

They are placed in parenthesis after the name of the class. For example:

class SimpleClass(int i[2]) {

int(3) a = i[0];

int(3) b = i[1];

}

When declaring variables of parameter type classes, it is required that actual argu-

ments are provided in place of the formal ones:

int(2) v[2];

SimpleClass a(v);

Of course the types of the formal and actual parameters must match.

10 CHAPTER 1. BFLAVOR SPECIFICATION

1.7 Verbatim codes

Verbatim codes are used to signal additional info to the parser that will be generated.

Six verbatim codes are defined within the BFlavor specification. These codes are

characterized by the verbatim delimiters %x{ and %x}. The symbol x hereby denotes

the type of the verbatim code.

1.7.1 Namespaces

BFlavor offers two verbatim codes to signal the information about namespaces that

have to be used in the resulting description. They have to occur at the beginning

of the BFlavor code. Their use is illustrated below.

//The namespace used in the resulting description

%targetns{H_264_AVC%targetns}

//The prefix namespace used in the resulting description

%ns{jvt%ns}

1.7.2 Root class

The root verbatim code is used to indicate which class the generated parser has to

start with. This verbatim code must also be present at the start of the BFlavor

code.

//The name of the root class

%root{Byte_stream%root}

1.7.3 Context class

When a class contains information that is needed for the continuation of the parsing

process, we have to declare that this class must be hold in memory (context):

%context{index_element%context}

class Example{

bit(5) index_element;

bit(2) a;

1.8. COMMENTING 11

bit(3) b;

}

In the above example, we see that a context class is preceded by the context-tag.

The value of this tag is the name of a variable of the class. This variable is the index

of the class. A context class can be uniquely identified with this index element.

When a class does not contain an index element (and the active context class is thus

always the last occurrence), ‘0’ is given as index element.

1.7.4 Emulation prevention bytes

When a start code occurs coincidentally in the bitstream, emulation prevention

bytes can be inserted in order to prevent a start code emulation. BFlavor provides

support for emulation prevention bytes by introducing this two verbatim codes. The

emulationBytes verbatim code is used by BFlavor to ignore the emulation prevention

bytes. A list of couples (code with emulation prevention byte, code without emulation

prevention byte) is given as an argument to this verbatim code.

//indicates that the generated parser has to discard the last

//byte when the byte sequence 0x000301 occurs

%emulationBytes{(000301, 0001);%emulationBytes}

The emulateBytes verbatim code is used to signal the occurrence of emulation pre-

vention bytes in the resulted BSD. The argument of this verbatim code is a list of

couples (code which cannot appear in the bitstream, emulated version of the code).

//When the byte sequence 0x0001 has to be written to the bitstream,

//an additional emulation prevention byte (0x03) has to be added.

%emulateBytes{(0001, 000301);%emulateBytes}

Note that the verbatim codes dealing with emulation prevention bytes and context

information are optional.

1.8 Commenting

Both multi-line (/**/) and single-line (//) comments are allowed. Multi-line com-

ment delimiters cannot be nested.

12 CHAPTER 1. BFLAVOR SPECIFICATION

Chapter 2

gBFlavor specification

So far, we only discussed the BFlavor specification. With this specification, it is al-

ready possible to generate a parser that is able to generate gBSDs. More specifically,

the resulting gBSD will have the same granularity as the granularity of the gBFlavor

code. However, MPEG-21 gBS Schema provides the possibility to add semantically

meaningful information to gBSDs by means of markers. In order to target specific

applications (i.e., adding markers on well-defined places in the gBSD), the BFlavor

specification is extended resulting in the gBFlavor specification.

2.1 The gBSDApp environment

The code for the insertion of markers targeting a specific application is denoted by

using the keyword gBSDApp. For each target application, a list of classes can be

specified where a number of calculations have to occur in order to be able to set a

marker at the right place. Each class within a gBSDApp environment has also to be

present in the first part of the gBFlavor code (i.e., the BFlavor code). The code of

a particular class occurring in a gBSDApp can be considered as a supplement on the

code of the corresponding class in the first part of the gBFlavor code. Within each

class inside the application-specific environment, a lightweight version of the BFlavor

specification can be used together with a new built-in function. Therefore, the

following restrictions on the BFlavor specification are applied withing the gBSDApp

environment:

• parsable variables;

• the built-in functions skipbits() and align();

13

14 CHAPTER 2. GBFLAVOR SPECIFICATION

• classes cannot extend the Encoded base class;

• classes cannot have parameters

• no verbatim codes are allowed.

Note that most of the restrictions are related to the fact that it is not allowed

to parse anything from the bitstream during the assignment of the markers. The

following example illustrates the use of gBSDApp environment:

// regular BFlavor code containing

// a list of classes

class class1 {

//...

}

class class2 {

//...

}

//start of a gBSDApp environment:

gBSDApp ExampleApplication {

class _class1 {

//...

}

}

Note that the name of the class within the gBSDApp environment is prefixed by the

“ ” character.

2.2 setmarker() function

Within the gBSDApp environment, an additional built-in function is defined. With

the setmarker() function, it is possible to set a marker at a specific place in the

2.2. SETMARKER() FUNCTION 15

resulting gBSD. Its use is illustrated in the following example:

setmarker("class2", "", "marked_element");

This built-in function takes three parameters as input. The first parameter is the

name of the class where the marker has to occur. The second parameter is the name

of the variable where the marker has to be inserted. In case the second parameter

is empty, the marker is inserted at the place where the class starts. In practice this

is considered as adding a marker to a Parameter element (in case a variable is given

in the second parameter) or to a gBSDUnit element which corresponds to the given

class specified in the first parameter (in case the second parameter is empty). The

third parameter is the actual value that will occur in the marker.

	BFlavor specification
	Variables
	Built-in functions
	nextbits()
	getcontext()
	numbits()
	align()
	skipbits()

	Datatypes
	Built-in datatypes
	User-defined datatypes

	Flow control
	Arrays
	Classes
	General
	Parameter Types

	Verbatim codes
	Namespaces
	Root class
	Context class
	Emulation prevention bytes

	Commenting

	gBFlavor specification
	The gBSDApp environment
	setmarker() function

