
BFlavor: Manual

1 Using BFlavor to generate a format specific par-

ser that is able to produce BSDs

1.1 A basic BFlavor code

A first simple example consists of the automatic generation of a parser that is able

to describe a text (ASCII) file. The result will be a Bitstream Syntax Description

(BSD) containing the different characters occuring in the text file.

Let’s first define a description for a text (ASCII) file using BFlavor. Such a file is

just a sequence of 8-bit characters. As such, the following BFlavor code describes

the syntax of a text file.

%targetns{TEXT%targetns}

%ns{text%ns}

%root{CharacterStream%root}

class CharacterStream{

while(1)

char(8) character;

}

This declares a class called CharacterStream, containing an indefinite while-loop.

In each iteration, a single variable character is parsed. The datatype of this variable

is char, and is represented in the bitstream using 8 bits. Note also the occurrence

of the three mandatory verbatim codes at the beginning of the BFlavor code.

Save this in a file called TextFile.bfl and run the translator on it by typing:

gbflavorc -gj TextFile.bfl. The output of the translator will be a Java class

stored in the file CharacterStream.java. Furthermore, the translator will create an

additional class, Main.java. This class uses the information from the root verbatim

code to start the parsing process properly. The class CharacterStream will have

just one member variable (character) and one method: putxml(). This method is

responsible for translating a bitstream into a corresponding BSD.

The following code shows an excerpt of the Java class that is generated by the

gbflavorc translator:

public class HelloBits {

1

char character;

public int putxml(IBitstream _F_bs, Context c) throws IOException {

...

}

}

Every class in the BFlavor code is thus translated into a Java class containing a

putxml() method. This method enables the creation of an XML description for the

class member variables.

After compilation of the Java files, we are able to parse a text file. Note that the

generated parser always expects two arguments: the input bitstream and the name

of the output BSD. Note that in order to properly compile the Java classes, the

classpath has to contain the library flavor.jar:

javac -classpath "PathToFlavorJar/flavor.jar" *.java

To run the generated parser, make sure the class files are in the right directory

(to avoid problems with packages). The following approach is recommended (in a

Win32 environment):

gbflavorc.exe -gj flavor_code.bfl

mkdir flavor_code

move *.java flavor_code

javac -cp ".;flavor.jar" flavor_code*.java

java -cp ".;flavor.jar" flavor_code.Main input.bit output.xml

The result of the parsing process for a text file containing the text “HELLO” will

result in the following BSD:

<CharacterStream

xmlns="TEXT"

bs1:bitstreamURI="test.txt"

xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"

xsi:schemaLocation="TEXT TextFile.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:text="TEXT"

>

2

<character>72</character>

<character>69</character>

<character>76</character>

<character>76</character>

<character>79</character>

</CharacterStream>

Note that this BSD can easily be converted into a bitstream by using the MPEG-21

BSDL software. However, a Bitstream Syntax Schema (BS Schema) is needed. This

can be obtained by using the gbflavorc translator:

gbflavorc.exe -gx flavor_code.bfl

The result is a BS Schema (flavor code.xsd) that can be used by MPEG-21’s

BSDtoBin parser.

1.2 A more complicated example

We will now continue with a more complicated example which will demonstrate the

most constructions that are available in BFlavor. We will build a BFlavor code

containing the high-level structure of a fictive video coding format.

1.2.1 The basic structure

%targetns{Example%targetns}

%ns{ex%ns}

%root{Byte_stream%root}

class Parameter_Set{

// ...

}

class Picture (int type){

// ...

}

class Parse_unit {

hexBinary(2) start_code = 0x0001;

3

bit(2) type;

switch(type){

case 0:

Parameter_Set parameter_set;

break;

case 1 .. 3:

Picture picture (type);

break;

}

}

class Byte_stream{

while(1){

Parse_unit parse_unit;

}

}

Our bitstream consists of a collection of parse units. Each parse unit contains a

start code and a type. Based on this type, the right class is used to continue with

the parsing process. The use of while, if-else, switch-case and for statements

is similar to Java or C++. One extra feature of BFlavor for the switch-case

construction is the use of ranges in the argument of the case statement. The use

of the hexBinary built-in datatype is demonstrated at the beginning of the class

Parse unit. Here, the variable start code is assigned with the value 0x0001. This

means that, during the parsing process, the value of this variable will be checked

against the actual value of this variable in the bitstream. Finally, the use of class pa-

rameters is demonstrated with the class Picture which takes as input the parameter

type.

1.2.2 User-defined datatypes

%targetns{Example%targetns}

%ns{ex%ns}

%root{Byte_stream%root}

%emulationBytes{(000301, 0001);%emulationBytes}

%emulateBytes{(0001, 000301);%emulateBytes}

4

class VLC_datatype extends Encoded{

int temp;

if(nextbits(2) == 3){

temp = 1;

}

else {

temp = nextbits(2);

}

//implementing the Encoded class:

int bitvalue = nextbits(temp * 2);

int value = bitvalue + 2;

int encoded = 1;

skipbits(temp * 2);

}

class Parameter_Set{

VLC_datatype vlc_e1;

if(vlc_e1.value == 2){

//...

}

align();

}

class Picture (int type){

if(type == 1){

//...

align();

byteRange(2) payload = 0x0001;

}

class Parse_unit {

hexBinary(2) start_code = 0x0001;

bit(2) type;

5

switch(type){

case 0:

Parameter_Set parameter_set;

break;

case 1 .. 3:

Picture picture (type);

break;

}

}

class Byte_stream{

while(1){

Parse_unit parse_unit;

}

}

We extend our BFlavor code by introducing some new constructions that are possible

in the BFlavor specification. The most important change is the use of a user-

defined datatype: VLC datatype. A user-defined datatype is a class which extends

the base class Encoding. This class contains three variables: value, bitvalue

and encoding. value has to contain the value of the variable encoded with the

datatype VLC datatype. The variable bitvalue contains the bitstream value of

the parsed bits. encoding can only contain two values: ‘0’ and ‘1’. If encoding

is equal to one, then this class needs an additional Java class compatible with the

bs0:implementation attribute of MPEG-21 BSDL. More information on this topic

can be found in the MPEG-21 DIA specification.

Within the Parameter Set class, the use of the VLC datatype datatype is illustrated.

Its value is obtained by accessing the value variable of the element vlc e1.

There are also some other new constructions introduced here:

• align(): provides the possibility to keep the current position in the bitstream

byte-aligned. Its use is illustrated at the end of the Parameter Set class. As

such, after parsing this class, the current position in the bitstream will be on

a byte-aligned position.

• byteRange: this built-in datatype is used to discard information we do not

want to describe. Using this datatype implies that a pointer to a particular

6

bitstream segment is added to the BSD. In the class Picture, the byteRange

datatype is used to skip bits in the bitstream until we reach the code ‘0x0001’.

Note that before using a variable of the type byteRange, the bitstream has to

be byte-aligned. This can be achieved by using the align() built-in function.

• nextbits(), skipbits(): within the class VLC datatype, the use of the nextbits()

and skipbits() function is illustrated. Note that the use of skipbits() im-

plies that these bits are actually skipped, nothing is written to the BSD (no

pointer to a bitstream segment like using the byteRange datatype).

• emulation prevention bytes: suppose that the start code ‘0x0001’ can be em-

ulated within the bitstream. In this case, our fictive video coding format can

provide the use of emulation preventation bytes. This means that when a start

code occurs by accident in the bitstream, one ore more additional bytes are

inserted in order to deny the occurrence of start codes in the bitstream (where

they not supposed to be). In our example, the start code ‘0x0001’ is converted

to ‘0x000301’. This is signalled by using the emulationBytes verbatim code.

The second verbatim code, emulateBytes, is used to signal the information

about the emulation prevention bytes to MPEG-21’s BSDtoBin parser.

1.2.3 The use of Context classes

The last extension to our BFlavor code is the introduction of context classes. Con-

sider the BFlavor code for our fictive video coding format:

%targetns{Example%targetns}

%ns{ex%ns}

%root{Byte_stream%root}

%emulationBytes{(000301, 0001);%emulationBytes}

%emulateBytes{(0001, 000301);%emulateBytes}

class VLC_datatype extends Encoded{

int temp;

if(nextbits(2) == 3){

temp = 1;

}

else {

7

temp = nextbits(2);

}

//implementing the Encoded class:

int bitvalue = nextbits(temp * 2);

int value = bitvalue + 2;

int encoded = 1;

skipbits(temp * 2);

}

%context{class_id%context}

class Parameter_Set{

bit(8) class_id;

VLC_datatype vlc_el;

align();

}

class Picture (int type){

bit(8) class_id_ref;

bit(getcontext("Parameter_Set", class_id_ref, vlc_el)) e1;

if(type == 1){

//...

align();

byteRange(2) payload = 0x0001;

}

class Parse_unit {

hexBinary(2) start_code = 0x0001;

bit(2) type;

switch(type){

case 0:

Parameter_Set parameter_set;

break;

case 1 .. 3:

Picture picture (type);

8

break;

}

}

class Byte_stream{

while(1){

Parse_unit parse_unit;

}

}

In our example, we marked the class Parameter Set as a context class. The reason

is that we need information from the Parameter Set class in order to correctly parse

the Picture class. Since a parse unit can be either a Parameter set or a Picture

class, it was not possible to pass this information by using class parameters.

In this fictive video coding format, every picture refers to a specific instance of

the class Parameter Set by means of the class id ref variable occurring in the

Picture class. This variable corresponds to the variable class id of the class

Parameter Set. Note that the variable class id is used as index element in the

context class which is denoted by given this variable as argument to the context

verbatim code.

The retrieval of variables occurring in a context class can be realized by using the

getcontext() built-in function as illustrated in the Picture class. In this example,

the variable vlc el is retrieved from the context.

2 Using BFlavor to generate a format specific par-

ser that is able to produce gBSDs

In order to demonstrate the generation of gBSDs, we reuse the example of the ASCII

text file description. Consider the following BFlavor code:

%targetns{TEXT%targetns}

%ns{text%ns}

%root{CharacterStream%root}

class ASCII_Character {

char(8) character;

9

}

class CharacterStream{

while(1)

ASCII_Character ascii_character;

}

This BFlavor code describes the structure of an ASCII text file. With this code, it

is already possible to generate a parser that is able to produce gBSDs given a text

file. Save this code to TextFile.bfl and execute the following commands:

gbflavorc -mode 1 -gj TextFile.bfl

mkdir TextFile

move *.java TextFile > NUL

javac -cp flavor.jar TextFile/*.java

java -cp .;flavor.jar TextFile.Main test.txt test.xml

We use the option -mode 1 to indicate that the parser has to produce gBSDs. When

we parse a textfile containing the text “HELLO”, the following gBSD is generated:

<dia:DIA xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS"

xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS">

<dia:DescriptionMetadata>

<dia:ClassificationSchemeAlias alias="text" href="TEXT"/>

</dia:DescriptionMetadata>

<dia:Description

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"

xsi:type="gBSDType"

addressUnit="bit"

addressMode="Absolute"

bs1:bitstreamURI="test.txt">

<gBSDUnit syntacticalLabel=":text:ascii_character" start="0">

<Parameter name=":text:character" start="0" length="8">

<Value xsi:type="b8">72</Value>

</Parameter>

</gBSDUnit>

<gBSDUnit syntacticalLabel=":text:ascii_character" start="8">

10

<Parameter name=":text:character" start="8" length="8">

<Value xsi:type="b8">69</Value>

</Parameter>

</gBSDUnit>

<gBSDUnit syntacticalLabel=":text:ascii_character" start="16">

<Parameter name=":text:character" start="16" length="8">

<Value xsi:type="b8">76</Value>

</Parameter>

</gBSDUnit>

<gBSDUnit syntacticalLabel=":text:ascii_character" start="24">

<Parameter name=":text:character" start="24" length="8">

<Value xsi:type="b8">76</Value>

</Parameter>

</gBSDUnit>

<gBSDUnit syntacticalLabel=":text:ascii_character" start="32">

<Parameter name=":text:character" start="32" length="8">

<Value xsi:type="b8">79</Value>

</Parameter>

</gBSDUnit>

</dia:Description>

</dia:DIA>

Note that no markers are occuring in the generated gBSD. In order to make this

gBSD more application-specific and therefore easier to transform, we will add a

gBSDApp environment to the BFlavor code (resulting in a gBFlavor code). This is

illustrated in the following example:

%targetns{TEXT%targetns}

%ns{text%ns}

%root{CharacterStream%root}

class ASCII_Character {

char(8) character;

}

class CharacterStream{

while(1)

ASCII_Character ascii_character;

11

}

gBSDApp CharacterMarking {

class _ASCII_Character {

char mychar = $character;

switch(mychar){

case ’H’:

setmarker("ASCII_Character", "", "H");

break;

case ’E’:

setmarker("ASCII_Character", "", "E");

break;

case ’L’:

setmarker("ASCII_Character", "", "L");

break;

case ’O’:

setmarker("ASCII_Character", "", "O");

break;

}

}

}

The application “CharacterMarking” will put a marker for every ASCII character if

the character is equal to ‘H’, ‘E’, ‘L’, or ‘O’. The marker will contain the actual char-

acter. Note that it is possible to use member variables from the ASCII Character

class within the gBSDApp environment. However, in that case, such a variable must

be prefixed with a $. Note also that the class ASCII Character must be prefixed

with a within the gBSDApp environment.

Declaring an application within the gBFlavor code will result in an extra parameter

for the generated parser. It is now possible to specify the name of the target ap-

plication. This name is the name of the corresponding gBSDApp environment. The

following commands are thus executed:

gbflavorc -mode 1 -gj TextFile.bfl

12

mkdir TextFile

move *.java TextFile > NUL

javac -cp flavor.jar TextFile/*.java

java -cp .;flavor.jar TextFile.Main

test.txt test.xml CharacterMarking

By specifying that the target application equals to “CharacterMarking”, the follow-

ing gBSD is generated:

<dia:DIA xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS"

xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS">

<dia:DescriptionMetadata>

<dia:ClassificationSchemeAlias alias="text" href="TEXT"/>

</dia:DescriptionMetadata>

<dia:Description

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"

xsi:type="gBSDType"

addressUnit="bit"

addressMode="Absolute"

bs1:bitstreamURI="test.txt">

<gBSDUnit syntacticalLabel=":text:ascii_character" marker="H"

start="0" length="8"/>

<gBSDUnit syntacticalLabel=":text:ascii_character" marker="E"

start="8" length="8"/>

<gBSDUnit syntacticalLabel=":text:ascii_character" marker="L"

start="16" length="8"/>

<gBSDUnit syntacticalLabel=":text:ascii_character" marker="L"

start="24" length="8"/>

<gBSDUnit syntacticalLabel=":text:ascii_character" marker="O"

start="32" length="8"/>

</dia:Description>

</dia:DIA>

As one can see, targeting a specific application not only results in the occurences

of markers within the gBSD. The granularity has also changed resulting in more

compact gBSDs. Note that this granularity is calculated based on the places where

the markers are set.

13

3 Command Line Options

The BFlavor translator accepts a number of command line options. In the following

we describe its options in detail, and explain how they affect the generated code.

Options are grouped in terms of their functional behaviors.

3.1 Usage Message

-h, -? Print the usage message.

Prints the usage summary, including the list of the available command line options.

The translator only works on one .bfl file at a time and all options must be specified

before the input file name. For example:

gbflavorc -gj input.bfl

The exit value of the translator (the value returned to the operating system) is the

number of errors encountered during parsing and code generation. A value of 0

indicates successful operation.

3.2 Version Information

-V Print the version information.

Prints a message detailing the current version number and date of release of the

translator. For example:

GBFLAVORC Version 4.0.0 [beta] 01/11/2006

Copyright (C) 2004-2006, Multimedia Lab, Ghent University.

http://multimedialab.elis.ugent.be

3.3 Technology options

-gj Generate Java source classes.

-gx Generate MPEG-21 BS schema.

14

The gj option produces Java classes, i.e., the translator generates a .java file for

every BFlavor class defined in the .bfl file. When using the gx option, the translator

produces an MPEG-21 BS schema for a given BFlavor code. For every class defined

in BFlavor, a corresponding complex type is defined.

-p int set profile (BSDL-1: int=1 (default), BSDL-2: int=2)

-bv int set BSDL version (BSDL_1.1.3: int=0,

BSDL_1.2.1: int=1 (default))

-mode int set Program mode (BSDL: int = 0 (default),

gBS Schema: int = 1)

It is possible to generate a BS Schema that cannot only be used by MPEG-21’s

BSDtoBin parser, but also by MPEG-21’s BintoBSD parser. Therefore, the BS

Schema needs support for BSDL-2. This option can be enabled by setting the

-p option on two. One can also choose between different versions of the MPEG-

21 BSDL reference software by using the -bv option. In order to choose between

generating a parser that generates BSDs or gBSDs, the option -mode can be used.

3.4 Output File Selection

-oj name Set the output Java package name

-op name Set the name of the Flavor run-time

library package (default: flavor).

-ox name Set the output file name for the generated

BSDL Schema file.

In the case of producing Java code, the translator produces one .java file per BFlavor

class and they are packaged using the input file name, by default. Using the -oj name

option, the desired package name can be set. The generated Java code utilizes the

BFlavor library by importing the library package. By default, the package name is

“flavor”; however, this can be modified by using the -op option.

Additionally, when generating an MPEG-21 BS schema, the default output file name

is the input file name with the suffix changed to .xsd.

3.5 Array Sizing

-a size Set maximum array size. The default is 64.

15

Although BFlavor supports arrays of arbitrary sizes, the translator produces code

that declares all arrays with a constant, statically defined size. This option sets

the initial value for this size, with the default value of 64. The translator will

automatically increase it (and issue a warning message) when it detects that a

larger value is needed. Note that this is not always possible, so that care should be

taken by the user to ensure that a large-enough size is used.

3.6 Null-Terminated Strings

-s Use null-terminated strings

The translator converts strings to arrays, with or without a trailing ‘\0’ (null). This

option causes to include the trailing null.

3.7 Run-Time Interface

-B string Use string as the bitstream I/O class.

The default is IBitstream.

-F string Use string as a prefix for internal Flavor-generated

variables. The default is _F_.

-E string Use function string to report bitstream syntax errors.

The default is flerror.

The generated code relies on a small number of classes and functions to perform

low-level bitstream I/O and error reporting. These are part of the run-time library

which is included in this package. The design of the run-time library has been done

in a way that facilitates its substitution by alernate implementations that may better

suit a programmer’s application needs. These options allow the customization of the

code produced by the translator so that the programmer-supplied substitute classes

or functions are called. Note that, although the names can be modified, the interface

exposed by these classes must comply to the one expected by gbflavorc.

The -B option sets the name of the class implementing low-level I/O. The default

class, provided in the run-time library, is Bitstream. The -E option is used to set

the name for the function to be called when bitstream syntax errors occur. The

default is flerror.

16

BFlavor also uses a small number of internal variables. To avoid conflicts with

variables defined in the user’s code, all such variables are given a prefix. The default

is F , but it can be changed using the -F option.

3.8 Disallow Further Options

-- Disallow further options

This options is used to disallow usage of further options. This allows to use a

BFlavor source file name that starts with a dash.

17

	Using BFlavor to generate a format specific parser that is able to produce BSDs
	A basic BFlavor code
	A more complicated example
	The basic structure
	User-defined datatypes
	The use of Context classes

	Using BFlavor to generate a format specific parser that is able to produce gBSDs
	Command Line Options
	Usage Message
	Version Information
	Technology options
	Output File Selection
	Array Sizing
	Null-Terminated Strings
	Run-Time Interface
	Disallow Further Options

